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The development of implicit upwind algorithms for tile solution of the three-dimensional, time-dependent Euler

equations on unstructured tetrahedral meshes is described. The implicit temporal discretization involves either a two-

sweep Gauss-Seidel relaxation procedure, a two-sweep Point-Jacobi relaxation procedure, or a single-sweep Point-lmplicit

procedure; the upwind spatial discretization is based on the flux-difference splitting of Roe. Detailed descriptions of the

three implicit solution algorithms are given, and calculations for the Boeing 747 transport configuration are presented

to demonstrate the algorithms. Advantages and disadvantages of the implicit algorithms are discussed. A steady-state

solution for the 747 configuration, obtained at transonic flow conditions using a mesh of over 100,000 cells, required

less than one hour of CPU time on a Cray-2 computer, thus demonstrating the speed and robustness of the general

capability.

1. INTRODUCTION

In recent years, significant progress on develop-

ing numerical algorithms for the solution of the gov-

erning fluid flow equations on unstructured meshes has

been made (refs. 1-7). This progress includes improve-

ments in solution accuracy as well as computational effi-

ciency. For example, upwind methods have been devel-

oped for unstructured meshes which are based on the local

wave propagation characteristics of the flow, and con-

sequently, produce highly accurate solutions (refs. 2,3).

Most of these upwind methods, however, use explicit

time-marching schemes to integrate the governing equa-

tions in time to steady state. The explicit approach is

computationaUy efficient when applied to meshes that are

coarse, but the rate of convergence deteriorates signif-

icantly when finer meshes are used. For cams where

finer meshes are used, either a multigrid strategy for con-

vergence acceleration or an implicit temporal discretiza-

tion which allows large time steps is required to obtain

steady-state solutions in a computationally efficient man-

ner. Implicit upwind solution algorithms for unstructured

meshes in two dimensions have been reported by the au-

thor in ref. 8. These algorithms are similar to the point-

implicit scheme of Thareja et al. (ref. 9), although the

methods of ref. 8 are fully implicit and not point im-

plicit. The purpo_ of the paper is to describe the de-

velopment of three implicit upwind algorithms for the

solution of the three-dimensional time-dependent Euler

equations. The implicit temporal discretization involves

either a two-sweep Gauss-Seidel relaxation procedure, a

two-sweep Point-Jacobi relaxation procedure, or a single

sweep Point-Implicit procedure. The spatial discretization

of the scheme is based on the upwind approach of Roe

(ref. 10) referred to as flux-difference splitting (FDS). The

FDS approach is naturally dissipative, and consequently

captures shock waves and contact discontinuities sharply.

Detailed descriptions of the three implicit solution algo-

rithms are given, and calculations for the Boeing 747

transport configuration are presented to demonstrate the

efficiency of the algorithms.

2. EULER EQUATIONS

in the present study the flow is assumed to be

governed by the three-dimensional time-dependent Euler

equations which may be written in integral form as

fl_- / QdV + f (En_. + Fn_ +Gn:)dS = Oot (I)

iq o_



where Q is the vector of conserved variables, and E, F,

and G are the convective fluxes. Equation (1) has been

nondimensionalized by the freestream density and the

freestream speed of sound. Also, the second integral

in Eq. (1) is a boundary integral resulting from appli-

cation of the divergence theorem, and 7_, 71y, and n_ are

Cartesian components of the unit normal to the boundary

surface.

3. SPATIAL DISCRETIZATION

The spatial discretization is based on Roc's flux-

difference splitting which is herein implemented as a cell-

centered scheme whereby the flow variables are stored at
the centroid of each tetrahedron and the control volume

is simply the tetrahedron it.self. Consequently, the spatial

discretization involves a flux balance where the fluxes

across the four faces of a given tetrahedron are summed

as

4 4

E HAS = _ (E,,_. + F,,u + G,t..)AS (2)
m=! m=l

where AS is the area of the face. The flux vector H is

approximated by

,,--
where Q- and Q+ are the stale variables to the left and

right of the cell face and A is the flux Jacobian matrix

given by OH/OQ. Also the tilde and the absolute value

sign indicate that the flux Jacobian is evaluated using the

so-called Roe-averaged flow variables and the absolute

value of the characteristic speeds.

The left and right states, Q- and Q+, are determined

by upwind-biased interpolations of the primitive variables

q. In three dimensions, for a given tetrahedron j, for

example, the upwind-biased interpolation for q- across

the common face between tetrahedra j and k is defined

by
1

q- = q._ + _[(1 - g)A_ + (1 + ,¢)A+] (4)
u

where

A+ = q_. - qj (5a)

A_ = qj - qi (5b)

In Eqs. (4) and (5), q./ and q& are the vecto_ of primi-

tive variables at centroids j and k, respectively, and qi,

the vector of primitive variables at node i (the node of

tetrahedron j opposite to the face being considered), is de-

termined by an inverse-distance-weighted average of the

flow variables in the tetrahedra surrounding node i. The

upwind-bia_d interpolation for q+ is determined simi-

larly. Also the parameter t¢ in Eq. (4) controls a fam-

ily of difference schemes by appropriately weighting A_

and A+. On structured meshes, it is easy to show that

t¢ = -1 yields a fully upwind scheme, n = 0 yields

Fromm's scheme, and t¢ = 1 yields central differencing.

In calculations involving upwind-biased schemes, os-

cillations in the solution near shock waves are expected to

occur. To eliminate these oscillations flux limiting is usu-

ally required. The flux limiter modifies the upwind-biased

interpolations for q- and q+ such that, for example,

q- = qj + _[(1 - tcs)A_ + (1 + ns)A+] (6)

where s is the flux limiter. In the present study, a con-

tinuously differentiable flux limiter was employed which

is defined by

2A_ ,5,+ +
= (7)

where ( is a very small number used to prevent division

by zero in smooth regions of the flow.

4. TEMPORAL DISCRETIZATIONS

The temporal discretizations are of the implicit type

and are generally derived by first linearizing the flux

vector H according to

OH
H ''+_ = H" + -g-0-AQ (8)

where cgH/cgQ is the flux Jacobian A, as discussed before,

and AQ = Q,,+l _ Q,. Lincarizing both flux terms on

the right-hand-side of Eq. (3) using Eq. (8), and ignoring

the tilde on the flux Jacobian, results in

[vo,, ]_7 + _ A+(QJ)_S AQj
tlt=]

4

+ _ A-(Q,,)ASAQ,, =
TII ---- I

.I
1 n

-5 Z [.(o+)+.(o-)- (o*-Q-)] A,s
:'_1= I

(9)
where I is the identity matrix, "vol" is the volume of the

tetrahedron j, and AQm is the change in flow variables

in each of the four tetrahedra adjacent to tetrabedron j.

Also in Eq. (9) A + and A- are forward and backward

flux Jacobians, respectively. For flux-difference splitting,

the exact Jacobian A (derivative of the right-hand side of

Eq. (3) with respect to Q) is too expensive to compute,



and thus an approximate Jacobian is normally used. This

is accomplished by constructing the Jacobians making

use of the fact that the forward and backward Jacobians

should have non-negative and non-positive eigenvalues

(characteristic speeds), respectively. This is accomplished

by expressing alternatively the Jacobians using similarity

transformations such that

A + = RA+R -l .4- = RA-R -t (10)

where A + and A- are diagonal matrices who_ diagonal

elements are the eigenvalues A + and A- defined by

_+ = 7(_+ I_1) _-= (;_- IAI) (to

and R is the matrix who_ columns are the corresponding

eigenvectors.

A similar implicit temporal discretizalion that is more

efficient than the discretization of Eq. (9), is derived by

linearizing the flux vector of the quasi-linear form of

the Euler equations with respect to the primitive flow

variables. This approach results in an equation similar

to that of Eq. (9) given by

]-_ + _ a+(qj)A,q Aqj
trim1

4

+ _ a-(q..)ASAq,,, =

B- 1 4 t_Z 1
m=l

(12)
where the matrix B relates the time derivative of Q to

the time derivative of q as simply

0___Q_Q= B Oq (13)
Ot Ot

The discretization represented by Eq. (12) is more effi-

cient than the di_retization represented by Eq. (9) be-

cause the flux Jacobians a+ and a- are simpler mathe-

matically and therefore faster to compute than the flux
Jacobians A + and A-.

4.1 Gauss-Seidel Relaxation Procedure

Direct solution of the system of simultaneous equa-

tions which results from application of Eq. (12) for all

tetrahedra in the mesh, requires the inversion of a large

matrix with large bandwidth which is computationally ex-

pensive. Instead a Gauss-Seidel (GS) relaxation approach

is used to solve the equations whereby the summation in-

volving Aqm is moved to the right hand side of Eq. (12).

The terms in this summation are then evaluated for a

given time step using the most recently computed values

for Aqm. The solution procedure then involves only the

inversion of a 5x5 matrix (represented by the terms in

square brackets on the left hand side of Eq. (12) for each

tetrahedron in the mesh. Also, although the procedure is

implemented for application on (randomly-ordered) un-

structured meshes, it is not a point Gauss-Seidel proce-

dure. The method is in fact more like line Gauss-Seidel

since the list of tetrahedra that make up the unstructured

mesh is re-ordered from upstream to downstream, and the

solution is obtained by sweeping two times through the

mesh as dictated by stability considerations. The first

sweep is performed in the direction from upstream to

downsteam and the second sweep is from downstream to

upstream. For purely supersonic flows, the second sweep

is unnecessary.

4.2 Point-Jacobi Relaxation Procedure

The inner-most do-loop of the Gauss-Seidel relax-

ation procedure does not vectorize due to vector recur-

rences resulting from the evaluation of Aq,, using the

most recently computed values. Hence, a two-sweep

Point-Jacobi (PJ) type of relaxation procedure has been

developed that fully vectorizes. It is consequently faster

per iteration than the GS procedure, but is expected to

have diminished stability properties since the first sweep

ignores the Aq,,, term altogether, and the second sweep

uses the values of Aq from the first sweep to evaluate the

Aq,,_ teml in the second sweep. Thus the PJ procedure

is represented by

first sweep:

S? + .,:, )_s _q_" :

"-'£ 1,, I 1(o+-
2

(14a)

second sweep:

]+ _ a+(q, )AS' Aqi_7

4

Z - (l)= - a (q,,,)A.qAq,,,
ttl=l

2

(14b)

4.3 Point-Implicit Procedure

Advantages of the Gauss-Seidel and Point-Jacobi re-

laxation procedures are that they are numerically stable



for reasonably large CFL numbers, even on very fine

meshes, and consequendy they enable rapid convergence

to steady state. For unsteady applications, they allow the

selection of the step size based on the physical problem

rather than on numerical stability considerations. This is

in contrast with an explicit time integration which has

a restrictive step size for unsteady applications which is

more severe on finer meshes. A di_dvantage of the GS

and PJ relaxation procedures, though, is that they require

about twice the memory of an explicit time inlcgration,

primarily due to having to store the backward flux Jaco-

bian a-. Hence, a single-sweep Point-Implicit procedure

was developed (represented by Eq. (14a)) that does not

require the calculation of the backward flux Jacobian. it

is consequently faster than the GS or PJ relaxation proce-

dures, but is expected to have diminished stability prop-

erties since the Aq,,_ term is totally ignored.

S. BOUNDARY CONDITIONS

To impose the flow tangency boundary conditions

along the surface of the vehicle, the flow variables are set

within dummy cells that are effectively inside the geom-

etry being considered. The velocity components within

a dummy cell, (u, v, w)a, are determined from the val-

ues in the cell j adjacent to the surface, (u, v, u,)j. This

is accomplished by first rotating the components into a

coordinate system that has a coordinate direction normal

to the boundary face. The sign of the velocity compo-

nent in this direction is changed (hence imposing no flow

through the face) and the three velocity components are

then rotated back into the original x, y, z coordinate sys-

tem. After considerable algebra this yields

v = /-2n_nY 1-2._ -2%1_ t,
u, a 1_-2n_n, -2n_n. 1- 2n_ u,

5)

where nr_'ny _ and nz are the :r,y, and z components of

the unit vector that is normal to the boundary face. Also,

pressure and density within the dummy cells are set equal

to the values in the cell adjacent to the surface.

After application of the upwind-biased interpolation

formula to determine q- and q+ at each face, the velocity

components are corrected to give a "strong" implementa-

tion of the surface boundary condition according to

u ..... a_,f = u - n_.(un,: + vn u + wn.)

v ...... ,_d = v - ny(un_ + t,n v + u,n_) (16)

w.... _t,,t = u, - n_(un_: + vn v + u,n_ )

In the far field a characteristic analysis based on Riemann

invariants is used to determine the values of the flow

variables on the outer boundary of the grid. This analysis

correctly accounts for wave propagation in the far field

which is important for rapid convergence to steady-state.

6. RESULTS AND DISCUSSION

To assess the efficiency of the implicit upwind solu-

tion algorithms, calculations were performed for the Boe-

ing 747 aircraft configuration. The results were obtained

using the unstructured mesh shown in Fig. 1. The 747

geometry includes the fuselage, the wing, horizontal and

vertical tails, underwing pylons, and flow-through engine

nacelles. The unstructured mesh for the 747 contains

101,475 tetrahedra and 19,055 nodes for the half-span

airplane. Also there are 4,159 nodes and 8,330 triangles

on the boundaries of the mesh which include the airplane,

the symmetry plane, and the far field. Steady-state cal-

culations were performed for the aircraft at a freestream

Mach number M_ of 0.84 and an angle of attack or of

2.73 °. All of the results were obtained on the Cray-2

computer (Navier) at the Numerical Aerodynamic Simu-

lation Facility located at NASA Ames Re,arch Center.

Steady-state calculations were performed first using

the implicit Gauss-Seidel relaxation procedure. These

implicit results were obtained using a CFL number of

infinity and the flux Jacobians were updated only every

twenty iterations. Such a large value of the CFL number

was used for the GS results since the relaxation scheme

has maximum damping and hence fastest convergence for

very large time steps. This is in contrast with implicit

approximate factorization schemes which have maximum

damping for CFL numbers on the order of 10. Results

also were obtained for comparison purpo_s using an

explicit, three-stage, Runge-Kutta time-marching scheme

(ref. 2). These explicit results were obtained using a CFL

number of 4.0. with residual smoothing and local time-

stepping to accelerate convergence to steady state.

A comparison of the convergence histories between

explicit and implicit GS solutions is shown in Fig. 2(a).

The "error" in the solution was taken to be the L2-

norm of the density residual. As shown in Fig. 2(a), the

GS solution converges faster than the explicit solution.

The GS solution, for example, required 622 iterations

or approximately 3,420 CPU secs (less than one hour)

to converge to engineering accuracy, which is taken to

be a four order-of-magnitude reduction in the solution

error. In contrast, the explicit solution required 1,552

iterations or approximately ! 1,560 CPU secs to achieve

the same convergence. The GS relaxation procedure is

not only faster on a per iteration basis, but provides faster

convergence to steady state in terms of CPU time.



Figure I Surface mesh of triangles for the Boeing 747 aircraft.
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Figure 2 Comparison of implicit and explicit convergence histories for the Boeing 747 aircraft at M_o = 0.84 and o = 2,73'.

Figure 3 Steady pressure coefficient contours on the Boeing 747 aircraft at /11_ = 0.84 and o = 2,73 °.



Calculations were performed next with the implicit

Point-Jacobi relaxation procedure for the 747 aircraft.

These calculations were unstable for CFL numbers of in-

finity and 100 due to updating the Aq,,, term in a point

Jacobi fashion rather than in a Gauss-Seidel fashion. Sta-

ble results were obtained using a CFL number of 10 and

local time stepping was used to accelerate convergence

to steady state. As shown in Fig. 2(b), the PJ solution

converges faster than the explicit solution, but not as fast

as the GS solution convergence of Fig. 2(a). The PJ re-

suit required !,942 iterations or approximately 5,080 CPU

sees to converge the solution four orders of magnitude.

ttence, the PJ relaxation procedure, although not faster

than either the explicit or GS procedures on a per iter-

ation basis, provides faster convergence to steady state

in terms of CPU time in comparison with the explicit

Runge-Kutta procedure.

Calculations were performed also with the Point-

Implicit procedure for the 747 aircraft. These calculations

were unstable for CFL numbers of infinity, 100, and 10

due to the approximations that are made to solve the

implicit equations. Stable results were obtained using a

CFL number of unity and local time stepping was used

to accelerate convergence to steady state. As shown

in Fig. 2(c), the P! solution converges slower than the

explicit solution, and is also slower than the other two

implicit procedures. Although the PI algorithm converges

the slowest of all of the methods used in the present study,

it is the fastest algorithm on a per iteration basis. The

PI algorithm is about twice as fast as the GS relaxation

procedure and is nearly three times as fast as the explicit

Runge-Kutta method. Efforts to improve the rate of

convergence of the PI procedure by slowly increasing

the CFL number over the course of the calculation were

unsuccessful.

Finally, steady pressure coefficient contours on the

surface of the 747 aircraft are shown in Fig. 3. These

results were obtained using the GS relaxation procedure

with a CFL number of infinity. The contours indicate that

there is a significant amount of flow compression on the

nose of the aircraft along the inboard leading edge of the

wing, and inside the cowl of the engine nacelles. There is

flow expansion on the forward fuselage, on the horizontal

and vertical tail surfaces, and on the upper surface of the

wing terminated by a shock wave.

7. CONCLUDING REMARKS

The development of implicit upwind algorithms for

the solution of the three-dimensional time-dependent Eu-

let equations on unstructured tetrahedral meshes was de-

scribed. The implicit temporal discretization involves ei-

ther a two-sweep Gauss-Seidel relaxation procedure, a

two-sweep Point-Jacobi relaxation procedure, or a single-

sweep Point-Implicit procedure: whereas the upwind spa-

tial discretization is based on the flux-difference splitting

(FDS) of Roe. The FDS discretization is naturally dissi-

pative, and consequently captures shock waves and con-

tact discontinuities sharply. Detailed descriptions of the

three implicit solution algorithms were given, and calcu-

lations for the Boeing 747 transport configuration were

presented to demonstrate the algorithms. The 747 ge-

ometry included the fuselage, wing, horizontal and verti-

cal tails, underwing pylons, and flow-through engine na-

celles. Advantages and disadvantages of the implicit al-

gorithms were discussed. A steady-state solution for the

7,17 configuration, obtained at transonic flow conditions

using a mesh of over 100,000 cells, required less than one

hour of CPU time on a Cray-2 computer, thus demonstrat-

ing the speed and robustness of the general capability.
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